8.9. Non-Bond Energy Renormalization Potential

8.9.1. Functional Form

The non-bond Energy Renormalization potential has the functional form:

\(E=\left( {{\epsilon }_{A}}-{{\epsilon }_{g}} \right)\left[ \frac{1}{1+{{e}^{-k\left( T-{{T}_{T}} \right)}}} \right]+{{\epsilon }_{g}}\)

The force-field parameters for this potential and units are given by:

Equation Symbol Parameter Definition Units
\({\epsilon }_{A}\) Epsilon value in Arrhenius regime energy/mol
\({\epsilon }_{g}\) Epsilon value in glassy regime energy/mol
\(k\) Temperature breadth of the transition N/A
\({T}_{T}\) Crossover point of sigmoidal function temperature

8.9.2. XML Schema

The XML schema for the non-bond Energy Renormalization potential has the following representation (design mode representation using Liquid XML Studio):

../_images/NonBond-EnergyRenorm.png

The relationship between the equation symbols and XML schema notations are given by:

Parameter Definition Equation Symbol Schema Notation
Atom type of atom [i] (implicit) AT1
Atom type of atom [j] (implicit) AT2
Epsilon value in Arrhenius regime \({\epsilon }_{A}\) epsilon_A
Epsilon value in glassy regime \({\epsilon }_{g}\) epsilon_g
Temperature breadth of the transition \(k\) k_sig
Exponent of attractive term \({\gamma }_{att}\) n_att

The general attributes (describing the entire data set) are given by:

General Attributes Cardinality Value/Definition
style Fixed Mie
formula Fixed C*epsilon*[(sigma/R)^m_rep-(sigma/R)^n_att]
a_ij-units Required Enumerations specified in schema
r_c-units Required Enumerations specified in schema

The specific attributes (attached to each set of parameters) are given by:

Specific Attributes Cardinality Value/Definition
comment Optional Comment attached to parameter set
version Optional Version number of parameter set
reference Optional Reference attached to parameter set

Note that an XML document will be rejected from being entered into the WebFF database if a required attribute is left unspecified.

8.9.3. References

  1. LAMMPS Mie Pair Potential.
  2. Liquid XML Studio.
  3. Wenjie Xia, Jake Song, Cheol Jeong, David D. Hsu, Frederick R. Phelan Jr., Jack F. Douglas, Sinan Keten, “Energy-Renormalization for Achieving Temperature Transferable Coarse-Graining of Polymer Dynamics,” Macromolecules, 50 (21), pp. 8787–8796, (2017). DOI: 10.1021/acs.macromol.7b01717
  4. Wenjie Xia, Jake Song, Nitin H. Krishnamurthy, Frederick R. Phelan Jr., Sinan Keten, Jack F. Douglas, “Energy Renormalization for Coarse-Graining the Dynamics of a Model Glass-Forming Liquid,” Journal of Physical Chemistry B, 122 (6), pp. 2040-2045, (2018). DOI: 10.1021/acs.jpcb.8b00321
  5. Jake Song, David D. Hsu, Kenneth R. Shull, Frederick R. Phelan Jr., Jack F. Douglas, Wenjie Xia, Sinan Keten, “Energy Renormalization Method for the Coarse-Graining of Polymer Viscoelasticity,” Macromolecules, 51(10), pp. 3818–3827, (2018). DOI: 10.1021/acs.macromol.7b02560
  6. Wenjie Xia, Nitin K. Hansoge, Wen-Sheng Xu, Frederick R. Phelan Jr., Sinan Keten, and Jack F. Douglas, “Energy renormalization for coarse-graining polymers having different segmental structures,” Science Advances  5(4), eaav4683, (19 Apr 2019). DOI: 10.1126/sciadv.aav4683